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Abstract A novel electrogenerated chemiluminescence
(ECL) immunoassay based on enzyme amplification and
magnetic nanoparticle enrichment was developed, and carbo-
hydrate antigen 125 (CA125) was chosen as the analyte.
Fe3O4 magnetic nanoparticles loaded with anti-CA125 were
synthesized. The sandwich-type immunoassay was performed
on the magnetic force-controlled carbon paste electrode via
the immunoreactions among glucose oxidase-labeled anti-
CA125, CA125, and anti-CA125 on the surface of magnetic
nanoparticles. ECL was generated by the reaction between
luminol and hydrogen peroxide. Hydrogen peroxide was pro-
duced during the enzymatic reaction with glucose and mark-
edly increased in the presence of CA125 antigen. The CA125
concentrations were determined within the range of 0–
10 mU mL−1, and the detection limit was 8.0 μU mL−1. The
CA125 immunosensor was more sensitive than those previ-
ously reported. The proposed ECL method also provided a
simple selectivity immunoassay protocol, which was applied
in the determination of CA125 in clinical serum samples.

Keywords Magnetic nanoparticles .

Electrochemiluminescence . Immunosensor . CA125 .

Enzyme amplifier

Introduction

In recent years, magnetic nanoparticles have drawn much
attention in biological medicine, cytology, and biotechnology

[1, 2]. They have been used extensively as carrier of biospe-
cies for different purposes because of their good biocompati-
bility and large specific surface area that improves sensitivity.
Among these nanomaterials, Fe3O4 nanoparticles [3, 4] are
one of the most widely used magnetic nanoparticles because
of their advantages, such as low cost, easy preparation, high
saturation magnetization, as well as no adverse and toxic
effect. Researchers have immobilized biological species such
as enzymes, antibodies, and even cells on magnetic nano-
particles to construct biosensors for separation and detection
in biochemistry, molecular biology, clinical medicine, and
immunology [5–9].

Immunosensors with very high sensitivity and specific
immune reactions have been developed [10]. Preparing mag-
netic nanoparticle-based magnet-controlled immunosensors
[11–15] that can improve the simplicity, selectivity, and sen-
sitivity of antigen detection has gained increased interest. The
detection methods commonly used are electrochemical meth-
ods [16], chemiluminescence [17], fluorescence [18], and
surface plasmon resonance [19].

Electrogenerated chemiluminescence (ECL) has been
developed based on chemiluminescence. ECL has the
advantage of low background, high sensitivity, high selec-
tivity, good reproducibility, and easy controllability [20].
ECL immunosensors can improve not only the detection
sensitivity but also the quantities of immunoreagents
immobilized on the surface [21, 22]. ECL provides a
novel method for bioassays [23–25]. Recently, ECL biosen-
sors fabricated with enzyme and magnetic nanoparticles have
attracted attention [26]. However, immunosensors fabricated
with magnetic nanoparticles for ECL detection are rarely
reported.

In this paper, a strategy for preparing a novel ECL immu-
noassay based on enzyme amplification and magnetic nano-
particle enrichment was proposed. Carbohydrate antigen 125
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(CA125) was selected as a substrate for the assay. CA125
[27], a glycoprotein, is a reliable index of ovarian function.
Sensitive methods for CA125 determination in blood serum
need to be developed. CA125 is used as a marker in the
clinical diagnosis of several cancers, particularly for moni-
toring the treatment response in ovarian, lung, and stomach
cancers. In recent years, a variety of immunoassays have
been developed for CA125 detection, such as radioimmu-
noassay [28], enzyme-linked immunosorbent assay (ELISA)
[29, 30], microparticle enzyme immunoassay [31], and
chemiluminescence [32]. However, there is no report on a
CA125 electrochemical biosensor based on magnetic par-
ticles and ECL. In the present study, we proposed a
sandwich-type immunosensor in which CA125 antibody
was immobilized on magnetic nanoparticles. Anti-CA125
was labeled with glucose oxidase (GOD), and hydrogen
peroxide was produced in the presence of glucose. The
ECL of luminol can be initiated by applying an appro-
priate positive potential to the working electrode in the
presence of hydrogen peroxide [33]. Remarkably im-
proved sensitivity was achieved due to the amplification
effect of GOD. The sensor was highly sensitive, of low
cost, renewable, and easy to use. The experimental
results showed that the proposed method was a promis-
ing alternative tool for fabricating ECL biosensors for
CA125.

Experimental

Apparatus and reagents

Cyclic voltammetric and ECL experiments were carried
out using a model MPI-E ECL analyzer system (Xi’an
Remex Instrument Co., Ltd, China) equipped with a
three-electrode system comprising a platinum wire (auxiliary
electrode), an Ag/AgCl electrode (reference electrode),
and the CA125 immunosensor (working electrode).
Scanning electron microscopy (SEM) was performed
using a Hitachi S-4800 field emission SEM system. A
pHS-2 C model pH meter (Shanghai Leici Instruments,
China) and a DK-8B electrothermal constant-temperature
incubator (Shanghai Jinghong Instruments, China) were
also used.

Anti-CA125 (1 mg mL−1), CA125, and GOD-labeled
CA125 (GOD-CA125; 5 μg mL−1) were purchased from
Biosynthesis Biotechnology Company (Beijing, China).
GOD (120 U mg−1; from Aspergillus niger) was purchased
from Sigma. 3-(Aminopropyl) triethoxysilane (APS, 98 %)
was obtained from Johnson Matthey Company (Alfa
Aesar, USA). Bovine serum albumin (BSA) and 25 %
glutaraldehyde were obtained from Shanghai Biochemical
Co. (Shanghai, China).

A 0.01-mol L−1 luminol stock solution was prepared by
dissolving 0.0886 g of luminol (>98 %; Fluka) in 0.1 mol L−1

sodium hydroxide buffer. A Tris–HCl buffer solution was
prepared by mixing 0.05 mol L−1 tris(hydroxymethyl)amino-
methane and 0.1 mol L−1 HCl. Phosphate-buffered solution
(PBS, pH 7.4) was prepared from 0.1 mol L−1 Na2HPO4,
0.1 mol L−1 NaH2PO4, and 0.1 mol L−1 KCl. The washing
buffer solution consisted of PBS with 0.1 mol L−1 NaCl and
0.05 % (v/v) Tween 20 (PBST).

All other reagents were of analytical reagent grade and all
solutions were prepared with doubly distilled water (18.2
MΩ cm−1).

Preparation of immunosensor

Preparation of solid paraffin carbon paste electrode

Solid paraffin carbon paste electrode (SCPE) and magnetic
nano-Fe3O4 particles were prepared according to previous
methods [3].

An iron stick (ø 2.55 mm) about 3 cm in length and a
glass tube (ø 3 mm, i.d.) were prepared. The ends were
polished until smooth. Solid paraffin (mp 55 °C) and carbon
powder (particle size<38 μm) were mixed at a 3:1 (m/m)
ratio. The mixture was heated up to 60 °C until it melted
thoroughly. After the mixture was filled into a glass tube, the
iron stick was inserted. The residual mixtures were then
removed. The SPCE was polished on a smooth duplicated
microcloth (chamois leather) as well as 1.0, 0.3, and
0.05 μm aqueous slurry of alumina. Prior to modification,
the SPCE was polished again, sonicated in 1:1 HNO3/etha-
nol and doubly distilled water, and then finally dried at room
temperature.

Preparation of Fe3O4 nanoparticles

Fe3O4 nanoparticles were prepared by chemical copreci-
pitation of Fe(II) and Fe(III) ions (2:1 molar ratio) in
alkaline medium. About 2 mol L−1 of NaOH solution
was added to the ferric and ferrous chloride under vig-
orous agitation at 50 °C. During the reaction process, the
pH value was maintained at about 10. The solution was
then heated at 80 °C for 1 h under a N2 atmosphere.
Finally, the resulting precipitate was separated by mag-
netic decantation and washed with double-deionized
water.

Immobilization of anti-CA125 on Fe3O4 nanoparticles

Anti-CA125 was immobilized covalently on Fe3O4 by a
previously reported method [3]. Fe3O4 nanoparticles
(48 mg) were dispersed in 20 mL of ethanol by sonication.
Then, 0.2 mL of 3-APS was added and the solution was
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mechanically stirred for 12 h under a N2 atmosphere to
ensure the amino functionalization of the magnetic nano-
particles. About 4 mL of glutaraldehyde solution (10 %) was
added and the mixture was stirred for 3 h. Afterwards, the
nanoparticles were separated by a magnet and washed with
PBST. The obtained nanoparticles were then resuspended in
4 mL of PBS (pH 7.4). About 100 μL of anti-CA125
(1.0 mg mL−1) was added to the solution, which was gently
stirred for 12 h at 4 °C. The anti-CA125/Fe3O4 nanopar-
ticles were separated by a magnet and resuspended in 2 mL
of PBS.

Fabrication of the ECL immunosensor

The modified electrode was prepared following a pub-
lished method [14]. The core of the electrode was
attracted by a magnet. The fabrication processes of the
ECL immunosensor are shown in Fig. 1. During the
procedure, 10 μL of anti-CA125/Fe3O4 particle suspen-
sion was dropped on the surface and dispersed. The
electrode was subsequently immersed in 1 % BSA to
seal the nonspecific sites on the particle surface and then
rinsed by PBST. The electrode was incubated for 30 min
with CA125 with a concentration less than 10 mU mL−1.
Lastly, sandwich immunoconstruction was formed by
incubation in 75 ng mL−1 GOD-labeled anti-CA125 for
30 min. The immunosensor was washed with PBST to
remove excess antibody and then stored at 4 °C when
not in use.

Experimental method

The ECL test was conducted in 10 mL of 0.05 mol L−1 Tris–
HCl buffer (pH 8.5) containing 0.6 mmol L−1 luminol and
1 mmol L−1 glucose at room temperature. The ECL was
measured from −0.3 to +0.6 V at the scan rate of
100 mV s−1. The voltage of the photomultiplier tube was
set at 600 V. The ECL signal–time curve under continuous

potential scanning was performed for five cycles with the
magnification of four. ECL signals related to the CA125
concentrations were then measured.

Results and discussion

Characterization of Fe3O4 magnetic nanoparticles
and Fe3O4/anti-CA125

Figure 2a, b shows the SEM in the secondary electron
mode of Fe3O4 and Fe3O4/anti-CA125, respectively. The
average diameter of the Fe3O4/anti-CA125 composite
nanoparticles increased slightly compared with that of
Fe3O4 nanoparticles.

Figure 3 shows the size distribution image of Fe3O4

nanoparticles. The particle diameters ranged approximately
from 12 to 30 nm and were concentrated to about 20 nm.
Hence, the Fe3O4 particles synthesized by the method are in
nanometer size.

The magnetic hysteresis loop of the Fe3O4 magnetic
particles is shown in Fig. 4. A saturation magnetization of
48 emu g−1 was determined for the Fe3O4 nanoparticles,
indicating that the nanoparticles exhibited ideal magnetic
properties. The superparamagnetic behavior of Fe3O4 was
also clearly proven by zero coercivity and remanence on the
magnetization loop.
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Fig. 1 Schematic illustration of CA125 determination based on the
ECL immunoassay

Fig. 2 SEM micrographs (secondary electron imaging) of Fe3O4

nanoparticles (a) and Fe3O4/anti-CA125 (b)
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Electrochemical and ECL behaviors of enzyme-labeled
anti-CA125 attached onto the immunosensor surface

The CV and corresponding ECL intensity curves are
shown in Fig. 5. A high current response (a0) and weak
ECL intensity were observed at the bare electrode (point
a). The current decreased (b0) but the ECL intensity
increased sharply (point b) when measured by the immu-
nosensor, clearly demonstrating that GOD-labeled anti-
CA125 was successfully bound onto the surface of the
magnetic nanoparticles.

Optimization of the CA125 immunoassay

To obtain optimal ECL intensity, three buffer solutions were
investigated, including 0.1 mol L−1 borax buffer solution,
0.05 mol L−1 Tris–HCl buffer, and 0.1 mol L−1 PBS (pH
8.0). The result demonstrated that the maximal ECL inten-
sity can be obtained in Tris–HCl buffer. The effect of the pH
values (6.5–9) of different Tris–HCl buffers on the ECL
intensity was investigated, and the results are shown in
Fig. 6. Luminol is known to have a strong intensity in
alkaline solution [34]. The ECL signal increased with in-
creased pH, reached the maximum at pH 8.5, and then

decreased with the pH. On the other hand, the activity and
affinity of antigen and antibody CA125 remained high in
alkaline solution [35]. Thus, pH 8.5 was selected.

The effects of the incubation time and temperature on the
ECL density were evaluated separately. The results are
shown in Figs. 7 (points a and b). The ECL signal markedly
increased (Fig. 7, point a) with increased incubation time
(up to 30 min) and then changed slowly with increased
incubation time. This finding indicated that the combination
reaction of the antigen and antibody was completed and
reached a maximum response after 30 min. Thus, 30 min
of incubation time was selected.

ECL intensities were determined at varied temperatures
from 15 to 55 °C (Fig. 7, point b), and the maximum
response was obtained at 37 °C. Considering that the immu-
nosensor life decreases at high temperatures, the incubation
temperature was controlled at 25±1.0 °C.

The GOD-labeled anti-CA125 concentration was exam-
ined within the range of 0–175 ng mL−1, and the results are
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Fig. 3 Particle size distribution image of Fe3O4
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Fig. 4 Hysteresis curves of Fe3O4 magnetic particles
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Fig. 6 Effect of pH on ECL intensity. Tris–HCl buffer (0.05 mol L−1)
containing 0.8 mmol L−1 luminol and 1 mmol L−1 glucose at 37±1.0 °C
with an incubation time of 30 min and 75 ng mL−1 GOD-labeled
anti-CA125
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shown in Fig. 8 (point a). The ECL intensity increased with
the addition of GOD-labeled anti-CA125 and reached a
plateau by 75 ng mL−1. This result suggested that there were
sufficient antibodies allowed to react with the antigens com-
pletely. Hence, 75 ng mL−1 of GOD-labeled anti-CA125
was selected.

The effect of luminol concentration within the range 0 to
1.1 mmol L−1 on ECL intensity was studied. Figure 8 (point
b) shows that the ECL intensity increased with increased
luminol and tended toward stability at 0.6 mmol L−1. Hence,
the optimal luminol concentration was 0.6 mmol L−1.

Immunosensor response to CA125

Under the optimized test conditions, there was a linear
relationship between the ECL intensity (I) and CA125 con-
centration (C) within the range 0 to 10 mU mL−1 (Fig. 9).
The regression equation was I098.43C (mU mL−1)+116.30
and the correlation coefficient was 0.9990. The detection
limit of the designed immunosensor was 8.0 μU mL−1

according to 3σ/K, which indicated that it was a more
sensitive CA125 immunosensor than any reported before.

Table 1 shows a comparison of analytical parameters
such as the determination ranges and detection limits of
the proposed Fe3O4 magnetic nanoparticle-based ECL
immunosensor and others reported for CA125 determina-
tion. The immunoassay clearly exhibited a wide linear
range and low detection limit, indicating that it is one of
the most sensitive CA125 immunosensors compared with
most electrochemical methods and the traditional method
of solid phase ELISA [29]. Significantly, the method
developed was capable of continuously carrying out all
steps in less than 75 min for one sample, which is
shorter than that using commercial ELISA.

Selectivity of CA125 immunosensor

The selectivity of the immunosensor was estimated by mea-
suring the ECL responses of 5 mU mL−1 CA125 in the
presence of some possible coexisting substances. When the
relative deviation of the ECL intensities was less than ±5 %,
the maximum allowable concentrations of the compounds
were as follows: 200 ng mL−1 CEA, PSA, BSA, HSA, and
IgG, as well as 4 μg mL−1

L-Cyss, L-Pro, L-His, L-Trp,
and L-Ser. Most coexisting substances were not found to
interfere with the detection of CA125.
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Reproducibility and stability of the CA125 immunosensor

The reproducibility of the immunosensor was evaluated
by determining the ECL response to 2 mU mL−1 CA125
using five immunosensors fabricated by the same elec-
trode. A relative standard deviation (RSD) of 1.65 %
was obtained. For four different electrodes, an RSD of
3.80 % was obtained for the same concentration of
CA125, indicating a good reproducibility of the fabricated
immunosensor.

To ensure stability, the bionanoparticles were stored in a
refrigerator at 4 °C when not in use. The long-term stability
of the immunosensor for CA125 was evaluated within a
period of 60 days. About 2 mU mL−1 CA125 was tested
periodically, and no obvious signal change was observed in
14 days. Over the next week, the ECL response decreased
by about 10 %. After 42 days, a further decrease by about
15 % was observed compared with the initial response. This
finding indicated that the proposed immunosensor had a
good long-term stability, and the enzyme maintained its
biological activity when immobilized on the electrode.

Application of immunosensor to serum samples

To further investigate the feasibility of the immunosensor for
clinical applications, we analyzed several real samples freshly
obtained from theHospital of Guilin University of Technology.

About 2 mL of serum was transferred to a centrifuge tube, and
500 μL of sodium citrate (2.29 gmL−1) was added until com-
plete blood coagulation within 1 h. The serum samples were
stored at −20 °C until the assay. Before measurement, the
serum samples were centrifuged at 3,000 rpm for 10 min, the
supernatant was collected to be diluted stepwise with PBS (pH
7.4). The purpose of this step was to ensure that the unknown
CA125 concentration was within the dynamic detection range
of the proposed method. The ECL values were obtained, and
the determination results as well as the recoveries are shown in
Table 2. The RSD was from 1.14 to 4.31 %. The recoveries
ranged from 93.4 to 109.5 %. Thus, the developed ECL
immunosensor can be used to determine CA125 in human
serum samples.

Conclusions

In the present work, a sensitive and easily renewable ECL
sandwich immunosensor was constructed by immobilizing
the antibody on the surface of Fe3O4 nanoparticles. The
immunosensor exhibited high sensitivity, selectivity, speci-
ficity, and a wide linear range for CA125 detection. The
proposed immunosensor can provide a new ultrasensitive
device and approach for analyzing biologically active mol-
ecules. It meets the analytical requirements of biochemistry,
molecular biology, clinical medicine, and immunology.

Table 1 Analytical parameters reported for the determination of CA125

System Method Determination range (U mL−1) Detection limit (U mL−1) Ref.

Fe3O4 nanoparticle membrane ECa 0.1–450 0.1 [36]

Colloidal nano-gold membrane EC 0–30 1.73 [37]

PPy nanowire biosensors EC 1–1000 1 [38]

Carbon nanofiber membrane EC 2–75 1.8 [39]

Nano-Au/Co(bpy)3
3+/MWNTsb–Nafion film EC 1.0–150 0.36 [40]

Thionine and gold nanoparticles-modified carbon paste interface EC 10–30 1.8 [41]

Fe3O4 magnetic nanoparticles membrane ECL 0–10 mU mL−1 8.0 μU mL−1 This work

a Electrochemical method
bMulti-wall carbon nanotube

Table 2 Analysis of CA125 concentrations in clinical sera using the proposed ECL immunosensor

Samplea Detected (U mL−1) Mean (U mL−1) RSD % (n05) Added (U mL−1) Detected (U mL−1) RSD % (n05) Recoveries
(%)

1 2.78, 2.67, 2.99, 2.88, 3.09 2.84 4.31 10 11.99 1.19 93.4

2 14.58, 14.69, 14.48, 14.27, 14.16 14.44 1.51 10 23.33 2.26 95.5

3 20.80, 20.59, 20.49, 19.96, 19.54 20.28 2.54 10 33.15 2.93 109.5

4 34.61, 34.40, 33.87, 33.24, 33.71 33.77 2.35 10 41.01 2.17 93.7

5 45.15, 44.84, 45.15, 44.10, 44.20 44.69 1.14 10 56.21 3.34 102.8

a Samples underwent stepwise dilution 104 times
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